skip to main content


Search for: All records

Creators/Authors contains: "Stern, Roni"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Powerful domain-independent planners have been developed to solve various types of planning problems. These planners often require a model of the acting agent's actions, given in some planning domain description language. Yet obtaining such an action model is a notoriously hard task. This task is even more challenging in mission-critical domains, where a trial-and-error approach to learning how to act is not an option. In such domains, the action model used to generate plans must be safe, in the sense that plans generated with it must be applicable and achieve their goals. Learning safe action models for planning has been recently explored for domains in which states are sufficiently described with Boolean variables. In this work, we go beyond this limitation and propose the NSAM algorithm. NSAM runs in time that is polynomial in the number of observations and, under certain conditions, is guaranteed to return safe action models. We analyze its worst-case sample complexity, which may be intractable for some domains. Empirically, however, NSAM can quickly learn a safe action model that can solve most problems in the domain. 
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  2. We consider the problem of learning action models for planning in unknown stochastic environments that can be defined using the Probabilistic Planning Domain Description Language (PPDDL). As input, we are given a set of previously executed trajectories, and the main challenge is to learn an action model that has a similar goal achievement probability to the policies used to create these trajectories. To this end, we introduce a variant of PPDDL in which there is uncertainty about the transition probabilities, specified by an interval for each factor that contains the respective true transition probabilities. Then, we present SAM+, an algorithm that learns such an imprecise-PPDDL environment model. SAM+ has a polynomial time and sample complexity, and guarantees that with high probability, the true environment is indeed captured by the defined intervals. We prove that the action model SAM+ outputs has a goal achievement probability that is almost as good or better than that of the policies used to produced the training trajectories. Then, we show how to produce a PPDDL model based on this imprecise-PPDDL model that has similar properties. 
    more » « less
  3. Creating a domain model, even for classical, domain-independent planning, is a notoriously hard knowledge-engineering task. A natural approach to solve this problem is to learn a domain model from observations. However, model learning approaches frequently do not provide safety guarantees: the learned model may assume actions are applicable when they are not, and may incorrectly capture actions' effects. This may result in generating plans that will fail when executed. In some domains such failures are not acceptable, due to the cost of failure or inability to replan online after failure. In such settings, all learning must be done offline, based on some observations collected, e.g., by some other agents or a human. Through this learning, the task is to generate a plan that is guaranteed to be successful. This is called the model-free planning problem. Prior work proposed an algorithm for solving the model-free planning problem in classical planning. However, they were limited to learning grounded domains, and thus they could not scale. We generalize this prior work and propose the first safe model-free planning algorithm for lifted domains. We prove the correctness of our approach, and provide a statistical analysis showing that the number of trajectories needed to solve future problems with high probability is linear in the potential size of the domain model. We also present experiments on twelve IPC domains showing that our approach is able to learn the real action model in all cases with at most two trajectories.

     
    more » « less
  4. null (Ed.)
    In many real-world scenarios, the time it takes for a mobile agent, e.g., a robot, to move from one location to another may vary due to exogenous events and be difficult to predict accurately. Planning in such scenarios is challenging, especially in the context of Multi-Agent Pathfinding (MAPF), where the goal is to find paths to multiple agents and temporal coordination is necessary to avoid collisions. In this work, we consider a MAPF problem with this form of time uncertainty, where we are only given upper and lower bounds on the time it takes each agent to move. The objective is to find a safe solution, which is a solution that can be executed by all agents and is guaranteed to avoid collisions. We propose two complete and optimal algorithms for finding safe solutions based on well-known MAPF algorithms, namely, A* with Operator Decomposition (A* + OD) and Conflict-Based Search (CBS). Experimentally, we observe that on several standard MAPF grids the CBS-based algorithm performs better. We also explore the option of online replanning in this context, i.e., modifying the agents' plans during execution, to reduce the overall execution cost. We consider two online settings: (a) when an agent can sense the current time and its current location, and (b) when the agents can also communicate seamlessly during execution. For each setting, we propose a replanning algorithm and analyze its behavior theoretically and empirically. Our experimental evaluation confirms that indeed online replanning in both settings can significantly reduce solution cost. 
    more » « less
  5. The Multi-Agent Pathfinding (MAPF) problem is the fundamental problem of planning paths for multiple agents, where the key constraint is that the agents will be able to follow these paths concurrently without colliding with each other. Applications of MAPF include automated warehouses and autonomous vehicles. Research on MAPF has been flourishing in the past couple of years. Different MAPF research papers make different assumptions, e.g., whether agents can traverse the same road at the same time, and have different objective functions, e.g., minimize makespan or sum of agents’ actions costs. These assumptions and objectives are sometimes implicitly assumed or described informally. This makes it difficult to establish appropriate baselines for comparison in research papers, as well as making it difficult for practitioners to find the papers relevant to their concrete application. This paper aims to fill this gap and support researchers and practitioners by providing a unifying terminology for describing common MAPF assumptions and objectives. In addition, we also provide pointers to two MAPF benchmarks. In particular, we introduce a new grid-based benchmark for MAPF, and demonstrate experimentally that it poses a challenge to contemporary MAPF algorithms. 
    more » « less